Table S4: Growth rates associated with secondary mutations (labeled A) found to interact non-multiplicatively with rho^* . Growth rates γ are given in doublings/hour; the absolute epistasis ϵ is calculated using Eq. S7, with a 95% confidence interval obtained via resampling of the posterior distribution of model parameters. Concentrations of ethanol, CML (chloramphenicol), and STP (streptomycin) were 5.5% (v/v), 1.875 μ g/mL, and 2.0 μ g/mL, respectively. †: Growth rates calculated using spline-based fitting; see Section 1 for details. ‡: Relative fitnesses obtained from competition experiments (see Section 1.9) thus, growth rates are omitted.

Media	Secondary mutation (A)	$\gamma_{ m WT}$	γ_{rho*}	γ_A	$\gamma_{A,rho*}$	$\epsilon_{A,rho*}$ (95% CI)
LB+ethanol	$rpsL^*$	(see text)				ext)
LB	$rpsL^*$	2.510	2.640	2.437	2.273	\mid -0.116 (-0.190 $-$ -0.044) \mid
M9t/glucose [†]	$\Delta visC$	0.951	1.018	0.828	0.704	$oxed{ -0.192 \ (-0.2240.159) }$
$M9t/\alpha KG$	$\Delta sthA$	0.509	0.525	0.499	0.494	$oxed{ -0.041 \ (-0.0730.009) }$
$M9t/\alpha KG^{\dagger}$	$\Delta aro M$	0.517	0.527	0.505	0.469	ig -0.090 (-0.124 $-$ -0.058)
$M9t/\alpha KG$	$\Delta yaaI$	0.509	0.525	0.516	0.530	-0.003 (-0.039 - 0.032)
$M9t/\alpha KG$	$\Delta y b a M$	0.509	0.525	0.483	0.492	-0.012 (-0.046 - 0.021)
M9t/glucose+CML	$\Delta envZ$	0.379	0.294	0.601	0.455	-0.030 (-0.106 - 0.041)
M9t/glucose+CML	$\Delta yadM$	0.379	0.294	0.373	0.296	$0.016 \; (-0.034 - 0.065)$
M9t/glucose+CML	$\Delta iraP$	0.379	0.294	0.376	0.270	ullet -0.056 (-0.105 $-$ -0.009)
M9t/glucose+CML	$\Delta apaH$	0.379	0.294	0.411	0.321	0.007 (-0.050 - 0.062)
M9t/glucose+STP [†]	$\Delta yagM$	0.660	0.960	0.355	0.924	0.618(0.495-0.737)
M9t/glucose+STP [†]	$\Delta y k g L$	0.660	0.960	0.581	0.948	$0.156 \; (0.025 - 0.277)$
$M9t/NADM^{\ddagger}$	$\Delta ppdD$	<u> </u>				$oxed{-0.359\ (-0.5180.212)}$
$M9t/NADM^{\ddagger}$	$\Delta yadN$	_				$oxed{-0.137\ (-0.276-0.006)}$